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AbslracL In their high-lemperalure cubic phase the alkali hydroxides NaOH and KOH 
and the oorresponding deuterated compounds are described by an elastic dipole model 
for the reorienting OH- groups. The theory descrilxr lhermo-difluse ranering, Huang 
scatleling and phonon softening. The inelastic data and lhe dispersions of the acoustic 
modes of KOD are shown and interpreted. Similarilies to amperalive lahn-Teller 
mmpounds and alkali cyanides are discussed. 

1. Introduction 

Recent evaluation of structural data, diffuse x-ray and neutron scattering of NaOH, 
NaOD and KOH and inelastic neutron scattering of NaOD, all in their cubic high- 
temperature phases, is contained in a recent paper by Bleif et a1 (1992) (hereafter 
referred to as I). In this paper the theory used in I for the interpretation of the 
inelastic neutron scattering and the diffuse x-ray data is explained and in addition 
applied to the inelastic data for KOD. 

The theory is based on a model of pseudo-spin-phonon coupling between 
reorienting OH groups and harmonic motions of the ions, i.e. the system is looked 
at as a set of elastic dipoles flipping between discrete orientations in an anisotropic 
elastic medium. The effect on the acoustic waves is calculated and compared with the 
measured phonon groups. This model is suggested by the fact that the Debye-Waller 
factor of the alkali ions is considerably larger than that of the oxygen ions, according 
to Ill, and by results from quasi-elastic incoherent neutron scattering on NaOH where 
the reorientational motion of the OH group has been studied by Smith el a1 (1979). 
In section 2 the details and predictions of the elastic dipole model are discussed. 
We shall make use of the results obtained earlier when applying this model to the 
disordered phase of cooperative Jahn-Teller compounds (Graf ef af 1989, Schotte et 
al 1989). 

In section 3 we derive an expression for the inelastic cross section by generalizing 
the method used by Yamada et a1 (1974) which has the correct limits for w -+ 00 

5 Present address: Heraeus Holding GmbH. W-6450 Hanau I, Federal Republic of Germany. 
ll For etample, for the mean displacemeno squared, and OH- laken as rigid, one finds that 
( U & ) / ( U i )  = 0.6. 
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and which is related to thermodiffuse scattering (TDs), and for w - 0 which is the 
Huang scattering limit. It contains mixing effects between the softened modes which 
we believe that we have seen in the experimental data. Section 4 is dedicated to the 
comparison between theory and experiment. Because of the time lapse of more than 
10 years since data acquisition this comparison remains more or less qualitative. Its 
aim is to point out characteristic features in the data. 

2. Elastic dipole model for the alkali hydroxides 

According to the results of I, NaOH and KOH are in their cubic phases of NaCl 
structure with 0 in the C1 sites, and each oxygen a n  be imagined as surrounded 
by a cube on which the accompanying proton moves (figure 1). The probability 
distribution was modelled such that the proton can jump between corner positions 
or edge middles or both, but the face centres are avoided. According to Smit et 
al (1979) assuming a jump mcdel with eight corner positions or one with rotational 
jump diffusion, it was found that reorientations take place on a time scale of lo-'* s. 

Figure 1. Structure of NaOH and KOH. The shaded NIKS indicate the pmbahility 
distribution of H+ around the oxygen atom. 

We take the OH group as a rigid dumbbell, as is done for the CN group in the 
alkali cyanides and represent it as an elastic dipole in a certain number of orientations 
given by symmetry: eight for the corner and 12 for the edge positions. The six face 
centre positions, although thought improbable, can also easily be treated. The point 
is to show that, from the acoustic phonon measurements, one can deduce which 
positions are taken, independently of what was already concluded from the structure 
data. 
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We note that the electric dipole moment of OH- is about three times that of 
CN-. We still neglected it since we do not expect it to influence the acoustic modes. 
The optical phonons have not been found in the accessible energy range; they may 
be totally overdamped owing to the relatively high dipole moment. 

The elastic dipole model has proved useful for systems with slower reorientational 
motions such as CsCuCI, or &PbCu(NO,), (Mori el al 1980) which are cooperative 
Jahn-Teller compounds, or for the alkali-halide-cyanide glasses (Wochner 1988). 

In these systems the shear modes have frequencies in the Same range as the 
molecular jump motions. With inelastic neutron scattering, in 'constant-q scans', one 
finds a central component at w = 0 plus 'hard-mode' peaks at high frequencies when 
the elastic dipoles seem quasi-static. With smaller wavevectors, overdamped and 
'soft modes' are seen. The latter sets in when the dipoles move so fast that a new 
effectively softer medium is seen by the neutrons. As described in I, for the plastic 
modification of NaOH (NaOD) we concluded that, in a similar way, as for the pure 
cyanides (Rowe et a1 1975, 1978), the soft-tomerdamped region cannot be left up to 
the zone boundary for the c4 and c" shear modes, because the dipoles move faster 
by an order of magnitude. Therefore the model of local perturbers in a 'hard elastic' 
medium seem somewhat artificial. We recall, however, that vice. versa the soft-e,- 
mode regime in CsCuCI, could not be reached since. it was expected for inaccessibly 
small q; the soft shear constant was only known from ultrasonic measurements hut 
could be predicted from the theory used for the inelastic neutron scattering data. 

We proceed to write down the free energy of the elastic dipole system embedded in 
an elastic medium of cubic symmetry. It is formally the same as has been used before 
(Schotte et a1 1989). The elastic dipole is a 3 x 3 tensor in a simple approximation 
expressed by 

P- :J  = d . d .  I I - (d2/3)6ij (1) 

where d is one of the eight (111) or one of the 12 (110) directions which we later 
distinguish by the index r. An as yet unknown strength factor is thought to be 
incorporated in d. 

The simple form of (1) is correct for an isotropic medium and the (111) direction 
in the cubic system. In general the elastic medium reacts to the local distortion 
such that individual components of P are proportional to 'effective' shear constants. 
This is treated by Schotte et a1 for the hexagonal medium. The corresponding 
modification needed here is given below. It does not change the outcome of the 
following discussion. (In fact, equation (1) is not even general enough to describe the 
simplest 'volume dipole' with P,, = Pyy = P,, and the other components zero.) 
In an elastic medium, as a first approximation, one asumes a linear coupling to the 
deformations. The elastic energy is then given by 

H = $1 Xijk,eijekl + P G E ; ~ c " ( R ~ )  (2) 
i j k l  r n i j  

where X i j k l  are the elastic constants, 

Eij = t ( aTLi / ax j  - auj/axi)  (3) 

and c'(R,) = 1 if there is an elastic dipole of type r in location Rn and c"(R,)  = 0 
if not. After Fourier transformation and expansion of the displacements ui in normal 
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acoustic modes, introducing the Fourier transform of the concentration fluctuation 
c'(R,) - c as (pseudo-)spin c'(q), the interaction term is 

q j  7 

where e .  is the normalized polarization vector of a mode w;(q)  and wavevector q 
and Qi(g)  is the phonon amplitude or normal coordinate. 

We shall use wt  = c i i q z / p  where p is the density and cii is the elastic constant 
or combination of elastic constants. 

The free energy can now he written as (leaving out the obvious dependence on 

J 

4 )  

F = $ ~ ( P ~ I J ;  + w:Q;Q;) t z [ h J c ' ( q ) Q ;  + ccl t 2 C c ' ( q ) c ' ( - q )  (5)  

where ro is the number of dipole directions, p; are the momenta and the last term 
is the entropy term TS. F can be minimized with respect to the spin by putting 
aF/ac'  = 0, solving for cP and inserting back into (5) to obtain an effective phonon 
energy 

r,kT 

q j  q j  'I.? 

We shall use 

with 

or, with (l), 

d2  
hi = [ (d ' .  e j ) ( C .  q )  - 3 ( q .  ej)12. 

1- 

(9) 

Qj  in (7) will be called for short the softened mode and wj the hard mode. 

properties of the Pr tensors. 

of dipole: 

In (7), E, hrh; = 0 for i f j has been used, which results from the symmetry 

For the cases of practical interest we calculated h f / r ,  from (9) for the three types 

d, = G(111) d, = a ( 1 1 0 )  d, = &(loo) (10) 

using the wavevectors and polarizations given on the left-hand side in table 1. The 
angular brackets denote the symmetrically equivalent set of eight comer, 12 edge and 
six face centre positions of H+ (or Dt). 

The results in table 1 on the right-hand side tell us that neither the eight-corner 
nor the six-face-centre model will do since then either cM or c" would not soften 
(they do soften that we already know from NaOD). The edge model effects all modes; 
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however, the softening effects on c" and c4 are comparable only, if we admit all three 
kinds of OH orientation. 

Nothing has been said yet about the strength of the elastic dipoles in the 
symmetrically different directions. Following the ideas of Khatchaturian (1966), an 
elastic dipole takes in a small volume V in the elastic medium inside which there is 
no internal stress;,that is, with the elastic energy and one dipole in Po, 

cijPijO(r-ro) 
V ff = (;Aijiicijcil + 

where 0 = 1 for r within the volume around ro and zero for r outside, one has the 
condition 

The deformation e E )  (inside V) follows from crystal geometry and (1) can be used to 
calculate it. From ( l l ) ,  one determines the shape of Pij for an anisotropic medium; 
for example, for the deformation along dK = ( l / d ) (  1,1,0),  one finds in the cubic 
system that 

1 0  0 0 1 0  
P , = _ , V ( f ( O  0 0 1 -2 o ) + c @ ( l  0 0 0  0 o ) ) .  (13) 

The first tensor in (13) would describe the dipole P, in the ( O , O ,  1) direction. For 
d ,  in one of the (111) directions, P, stays homogeneous and is proportional to ca. 
For example, for e i j  from a distortion along dR = (-1,1,1)/&, 

P R = - t c u q : l  -1 0 -1 ;) .  
3 " - 1 1  

For plastic crystals it is not clear which elastic constants should be used here and OL 

is not known either. There may be a chance to estimate it from the Debye-Waller 
factor. We just note that the three types of dipole have in principle different strengths 
owing to the 'anisotropic reaction' of the medium. We consider c" and c, to be of 
roughly the same order of magnitude and use the results in table 1 as a guideline as 
far as possible. 

3. Inelastic cross section of a pseudo-spin-phonon coupled system 

We start with the simplified expression for the inelastic neutron scattering cross 
section, depending on neutron energy transfer w and IC,  the scattering vector: 

where e; E e i ( q )  is a polarization of the wave with wavevector q and K = G+q with 
G a B r a g  reflection, b is the scattering length which contains the elastic S t n "  
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factor and the Debye-Wller factor and dC2 is the element of solid angle. We wish 
to calculate (QiQi) as a function of energy transfer w and wavevector q. For the 
model to be used, (QiQj)  = 0 for i # j which will be easy to see below. Following 
Yamada et a/ (1974) (See also the textbook by Landau and Lifschitz (1966)), it is 
helpful to consider a Set of time-dependent correlation functions 

@i j ( l )  = (z i (Ozj (0 ) )  (16) 

where zi refers to the components of a state vector, e.g. for a system with one phonon 
and one pseudo-spin z = (p, Q,S) with momentum p, normal coordinate Q and spin 
variable S.  The average refers to a Gaussian average determined by ;Pi jz iz j  in the 
exponent which is related to the Gibbs enthalpy H = E - TS. For example, with a 
linear coupling between phonon and spin, 

(kT/2)Pi jz ;x j  = p 2 / 2 + w i Q 2 / 2 +  hQS+ k T S 2 / 2  (17) 

so that the matrix for pij is given by 

1 0  

0 h k T  
(17') 

The Fourier-Laplace transform 

(zi(l)zj(0))exp(iwt)dt (18) 

can be expanded asymptotically: 
6 . . ( w ) =  - @ . . ( O ) / i ~ - & ~ ~ ( o ) / w  z - .... 

@ij(O) = ( P ) i j  

* I  : I  

The equal time average is given by 

which is the ij component of the inverse of the matrix p. The next term is determined 
by a matrix 7 which contains information about the dynamics: 

The crucial difficulty when applying this procedure to the spin-phonon problem Lies 
in the equation of motion for the spin. The spin is taken as a relaxator with a flip 
rate 7. The definition of y implies that 

?j. , = - ( 7 P ) i j Z j  (22) 

so that the mean value of the dissipation 

comes from the frictional forces acting on the pseudo-spin alone. 
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The asymptotic form for the correlation function is not very useful. A rational (in 
the mathematical sense) approximation, sometimes called the Pad6 approximation, 
having the Same asymptotic form is 

&(w) = p-'[l/(iwp-' - y)]p-'. (24) 

According to the definition of the state wctor we need the (2,2) element of this 
matrix. After some matrix algebra, one obtains, with (17) and (21). 

For (15), one needs the Fourier transform of (16). Since Qn( t )  is an even function 
in time, one has 

(26) 
1 k T  h 2 / k T  (QQ), = ;Re %(w) = - T Y  (wz - w: + h2 /kT)Z  + (w2/yZ)(w2 - wz)z '  U 

If we take this as (Q;Q,) referring to one of three acoustic modes, then ( Q i Q j )  
(i 31 j )  would be proportional to h i h j  which is zero for symmetry reasons if one uses 
(8) or (9). We note that diffuse x-ray scattering giving mS is determined to a good 
approximation by the integral over w in (15). The integral to be calculated is of the 
form 

with G+ analytic in the uppcr half-plane and G- in the lower half. Obviously the 
integrand decreases sufficiently rapidly for large w for the theorem from functional 
theoly to be used: 

and 

This means that one needs only the residuum at w = M, i.e. (p- ' )=  with (19) 
and (20) which can be found from (17). Therefore the ms does not depend on 
assumptions about the dynamics but is solely determined by the softened mode: 

In principle, one could measure elastic constants and follow softening near phase 
transitions in diffuse x-ray scattering. The rare occasion where this has been achieved 
quantitatively is for NaOH (ordered phases) by Bleif (1978). 

It is straighfotward to extend (17) to the general case for all acoustic modes and 
an r0 component spin (equations (5)-(7)) so that 
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where D;' is the inverse of the elastic matrix with Cl! as eigenvalues and e; 
as eigenvectors. For the inelastic cross section, the mathematical method 
straightfonvard; however, the strategy with respect to the relaxation process is unclear. 
If each spin component relaxes only within itself, S - -yS', all modes are decoupled 
and one obtains an expression such as (26) for each mode with hf from (8). This 
would result in an expression for Huang scattering at w E 0 which can be checked 
against the experimental results for CsCuCI,: 

which looks like the usual result but with 'softened' elastic constants. From a concept 
viewpoint, and as confirmed by the experimental findings, it makes little sense to use 
the 'soft' elastic constants in Huang scattering (Schotte 1987). From the experiments, 
one rather expects a result such as (32) with 'hard' elastic constants. The temperature 
may enter via a susceptibility. We have pursued such an approach for CsCuCI,, 
extending it to three phonons for each q and sticking to a single relaxation time 
(Schotte el a1 1989). The expression found for the inelastic moss section described 
the mixing effects well and also gave the desired form for Huang scattering except 
that the susceptibility had a dependence on the direction of the wavevector which 
distorted the Huang isointensity contours not much but noticeably at T close to the 
phase transition. Also the ms limit was only given up to higher-order terms in hf, 
and the case of degenerate modes was not treated well; for example the soft c& 
measured along q = (1,0,0) would have been different from that with q = (1,1,0) 
(see table 1 for degeneracy). 

We shall not repeat this earlier version but give the improved version which 
follows by adding higher-order terms in the denominator in h: and hf. It now has 
the expected limit for w -+ M (TDS) and a reasonable Huang limit. In the improved 
form the phonon correlation function is given by 

The products in the square brackets refer to the three modes for each q. We repeat 
that this expression is identical with that derived earlier up to higher-order terms in 
hf in the products. We leave the reader to show that we achieved this by putting 

z1zzz3 - a1zzz3 - l l a z z 3  - z1zza3 = (z, - a, ) (zz  - a 2 ) ( z 3  - a,) 

where 

2 2  x, = w - wi 

and 

a ;  = h:/r,,kT. 

The LHS is in the earlier version and the RHS is the first product in (33). 
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The main purpose of the first part of this section was to show that we use 
essentially a Pad6 approximation which gives the pole structure reliably (phonon 
peaks) but not necessarily the w -+ 0 limit (Huang scattering). We therefore find 
a modification justified which has the expected pole structure (soft and hard modes, 
and degeneracy treated correctly), gives the correct ' IDS  limit and improves on the 
Huang limit. 

The Huang limit can now be written as 

It has been checked that the quasi-elastic scattering of CsCuCI, (w 2 0) is now well 
described (Graf 1992). We also checked the full width at half-maximum (FWHM) as 
in the work of Schotte (1987). for its dependence on the elastic wnstants. There is 
almost no difference between the FWHM from (34) and that from the bare IHum,, 
but (32) disagrees with the experimental result. 

We shall, in the next section, evaluate the scattering cross section resulting from 
(33) for the experimental data available. 

4. Experimental results and application of theory 

The neutron scattering data available for NaOD are to be found in I. Some will be 
reproduced to make sure of the theoretical description since the KOD data are in a 
way less wmplete and the behaviour is expected to be similar. The measurements 
were performed at the INZ instrument of the Grenoble high-flux reactor (Kabs 1982); 
for details see 1. 

Since the temperature span of the cubic phase is much larger for KOD than 
for NaOD (NaOD, from 561 to 593 K; KOD, from 513 to 678 K), the temperature 
dependence of the phonon softening might have been detected. For KOD, inelastic 
scattering was measured for 573 and 623 K, but this temperature difference is 
estimated to lead to a change in the soft elastic constant within the accuracy of 
the determination of the elastic constants (about 5%); so at this point there is no 
chance to check the theory. 

, , L A : o ,  ~ x , ~ " ~ o o * ~  ~ 1 LA;o , 
TA: x TA:" Figure 2 Dispenions of the acoustic modes for 

KOD relating to c4 along [Wc] (TA mode), c11 
along [W(] (LA mode), c' along [ E @ ]  (LA mode) 

.L .3' .2 .1 .1 . 2  3 . L  .5 and c" along [ ( E O ]  (TA mode), as deduced from 
the experiments with wedamping. REDUCED WAVEVECTOR 
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Figure 2 shows the experimental results evaluated to give dispersions for the 
acoustic modes, with the start of overdamping indicated. The steep longitudinal 
branches were difficult to pursue owing to a lack of intensity. The corresponding 
elastic constants (see also table 1) are listed in table 2 According to the theory they 
are the softened values. 

Tabk Z Elastic w n s m t s  (fmm experiment). 
~ 

Uastic constant (uniu) NaOD KOD 

ell (1010 dyn m-2) 21.5 18.6 

C‘ = ~ ( C U  + c y  -f 2 ~ 4 4 )  (IO” dyn no-*) 16.8 
c“ = $(ell - c y )  (1010 dyn cm-2) 1.6 4.1 

CM (1010 dyn m-2) 4.4 2.5 
25.2 

With the values in table 2 the ms ismontours in qspace have been calculated and 
a reasonable resemblance to the x-ray result was found for NaOH, in I; in particular, 
the ‘diffuse streaks’ could be. explained as caused hy the very small values of ca and 
c”. Note that the anisotropy (cl, - cI2  - 2 c , ) / c ,  has different signs for NaOD 
and KOD from which characteristic differences also in the diffuse scattering can be 
predicted (there is, however, no such measurement for KOD). By choosing K = 020 
and 220 for q = ( l , l , O )  and ( k l , l , O ) ,  appropriate single modes are picked out. 
Therefore, (33) is representative of the scattering cross section. In principle it contains 
seven parameters (at most). The three softened elastic constants will be used in the 
Linear dispersions, e.g. 

RI,  = \ / c t t / d 2 ~ / a ) q  0 < 4 < 0.5 (35) 

with p = 2 g II = 5.7 A for KOD and 5.1 A for NaOD. For the ‘hard’ modes, 
somewhat larger values are tried but of course not quite arbitrarily and using table 1. 
For 7 one starts out with the experimental value of around 0.5 THz (Smit ef al 1979). 
It could be smaller because of the higher D+ mass; it could be larger because D+ 
should be distributed over more than eight sites as assumed by Smith et a1 . The 
final result which appears to give a good description of the experiment is surprising; 
it is not possible to use a single flip rate. We could do with two flip rates: a slow 
rate where the edge and face centre dipoles are involved (cII and c”) and a faster 
rate where the corner dipoles dominate (c, and c’)  (see table 1). The fitted factor 
of 3 between them is plausible if we remember from the structure data in I that the 
probability distribution of the proton is smaller by a factor of about 4 for the face 
centres than for the corners of the cube around the oxygen atom. 

Also 7 is 30% lower for NaOD than for KOD which again is plausible since the 
K ions are farther apart and the D+ motions less impeded. The c’ mode is the only 
one (measurable in the chosen experimental set-up) which is influenced by all three 
dipoles and is expected to be connected to an even higher Rip rate. However, no 
relevant experimental data focusing on this IA mode have become available so far. 

In table 2 the starting parameters used for the computer simulations are listed. 
The simulations lead to the values in table 3. Before we discuss them, let us look at 
the neutron scattering data and the theoretical simulations. 

In figures 3-6, original data together with calculations from (33) are shown. The 
ca and C” phonon groups show the expected softening and damping behaviour with 
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lhbk 3. Elaslic mnslants ('son' from experiment and 'hard' from theory fit) and also 
lhe flip mles 7 fmm fitting. 

Elastic mnstanl (units) NaOD KOD 

C I I ,  hard (IOIO dyn cn- ) M.4 21.3 2 21s 
ell, soft (10'0 dyn cn-' 

7 P z )  0.15 0.21 

c q ,  soft (1010 dyn an-') 4.4 25  
CO(. hard (IO1O dyn an-*) 1.6 4.4 
7 P Z )  0.45 0.64 

c", sofl (1O'O dyn 1.6 4.2 
cor, hard (IO'O dyn an-') 8.25 6.2 
7 W Z )  0.15 0.21 

c', soft (1O1O dyn 25.2 16.8 
c', hard (IOIO dyn an-') 29.1 19.54 
7 P z )  0.45 0.64 

ENERGY TRANSFER 
ITHrl 

.5 I---- 

T= 573 K 

O T  ll 
c44-Phonon KOD 

(6) 

015h 0.0 0.0 0.2 0.4 0 6 0.8 

THz 
I 

Figure 3. (0) Original data from inelastic neutron scattering for KOD mnstant-q scans 
for the c q  shear mode. I h e  lines are guides Io the eye, and also in the following figures. 
(b)  Iheoretical simulation, using (33) and (able 3, of c q  phonon p u p s  of KOD. n e  
same q-values as in the experiments are used. 

the development of the central component as expected. One might think that for this 
the original formula of Yamada el al. i.e. equation (26), would have been sufficient. 
From figure 7 for the cI1 phonon of NaOD, we can see that the full expression (33) 
b necessary; compare figures 7(a) and 7(b). In figure 7(c) the 'single-mode softening' 
is plotted, which does not reproduce the experimental findings. The mixing effects 
contained in (33) and figure 7(b) also subtract the intensity from the Q(cll) peaks and 
therefore make the dispersion difficult to follow up to higher q. Note that (QIQl) 
(equation (33)) has zeros at w2 and w3, which leads to the fine structure in figure 4(b), 
when RI  and w2 (or w3)  are close. It is not clear whether this is contained in the 
experimental data or an artefact of the theory (in practice these zeros are just dips if 
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ENERGY TRANSFER 
05 1.0 ITHzl 

\ TA-"& gl l l l lOl  Tz573K 

c"-Phonon KOD 

1 

'C 0.15 

Flgure 4 (0) Expelimental data for the d' shear mode of KOD. (6) lkeoretical 
simulation of the c" phonon groups, as for figure 3(b); and again for the same q-values 
as for (0). 

REDUCED WAVEVECTOR 

~ 

(Q) 

4 

Figure 5. (a) Cnnstanl-energy sans for the c u  LA mode of KOD. (b)  Simulation of the 
mul ls  in (a), using the Same w-paramclen; see ordinale of (a). Four single-peak a w e s  
are depicted. 

one assumes a 'natural' linewidth for the hard modes). figure 5 is a constant-E scan 
for the cl1 mode of KOD. Unfortunately the corresponding simulations are not very 
informative; there are always peaks given by O ( c I I )  and they become somewhat wider 
or higher if one changes y or the hard cij-values. From them it is not possible to 
obtain the parameters as in table 3. The Same holds for the c' mode and constant-E 
scan shown in figure 6. 

Returning to the parameters in table 3, the fitted values lead to the conclusion 
that all contributions, i.e. the last three columns in table 1, count. One Sees from 
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REDUCED WAVEVECTOR 
.1 .2 . 3  . A  

LA-mode gll111OI T=573K 
1.0.5 

Flgure 6. Constant-energy s a n s  for the c' LA mode. 
me Simulalion fmm lheory is tedious; see text. 

table 3 that for KOD the softening contributions c&-& and c;'-c; are comparable; 
the same holds for C; and cy1 and there is a difference between them of a factor of 
about 312 as suggested by table 1. 

NaOD at first glance seems to behave strangely; in particular, the softening of C" 
is extreme. Returning therefore to the idea of the anisotropy of the dipole tensors 
(end of section 2) we used (12)-(14) to calculate the dependence of the shear modes 
of all contributions in table 1. The result is, summing the contributions from d,, d, 
and d,, 

with a ( T )  = a2 /V2kT.  
Even with a( T) unknown, one can see that, if c" is larger than cM by a factor 

of about 1.4 (which does not seem unreasonable), the values for NaOD in table 3 
are consistent and again strongly support the suspicion that all the dipole types 
are necessary to describe the phonon behaviour. While this could be taken as an 
indication that the Ht (or D+) move basically on a sphere, we recall that the 
dipoles have different strengths, which should (or must according to our findings) 
be contained in the probability distribution and thereby the jump rates between the 
different types of H t  and/or D+ positions. 

5. Conclusions 

In their cubic phases, NaOH and KOH are plastic crystals. The internal 
reorientational motions are so fast that, in inelastic neutron scattering, only softened 
and overdamped acoustic modes are seen. We developed a theoretical description 
based on the concept of flipping elastic dipoles. It contains the mixing effects of 
softening modes, which are visible in the experimental data, and describes TDS as 
found from quasi-static diffuse x-ray scattering. For w = 0, the Huang limit has been 
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Flgum I .  (a) Original data for the ell U mode of NaOD. (b) Simulation of the c11 
phonon gmups wilh the full phonon mrrelation funclion (33), showing mixing eEecu. 
(c )  Simulation with the one-phonon mmelation function (26), note the absence of mixing 
erects. 

checked for CsCuCI,, since the hydroxides in principle cannot show Huang scattering 
for which the reorientational motion of OH must be slower than the lattice motions. 

The basic results from interpreting the neutron data with this theory are, firstly, 
that the symmetrically different types of dipole for corner, edge and face centre 
positions of H+ couple to different acoustic modes and show differing flip rates and, 
secondly, that also the face centre dipoles, thought to be less probable from the 
structure data, play a role in phonon softening and are responsible for much of 
the strong softening of the c" mode in NaOD. Thus the protons probably move on 
a sphere around the oxygen atom with strongly anisotropic residence times in the 
symmetrically different positions relevant to phonon softening. KOD seems more 
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isotropic (i.e. the dipoles have very similar strengths in the different directions) and 
the OD groups have higher (30%) flip rates, which seems plausible in the wider 
lattice. 
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